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The Cartesian dynamo model of Childress and Soward[Phys. Rev. Lett.29, 837(1972)] is studied numeri-
cally in the regime of low viscosity. Dynamos with Ekman numbersE in the range 10−4ùEù5310−7 are
discussed and compared with the corresponding nonmagnetic states and with results obtained for imposed
magnetic fields. We find that in the range of investigated Ekman numbers, a transition occurs from a flow
regime where the planform of convection is only weakly affected by the dynamo generated field to a regime
where the typical length scales of the flow are largely controlled by the Lorentz forces. The magnetic field acts
to facilitate convection and leads to an increase in both the heat transport and in the amplitude of the flow. We
demonstrate that this convection promoting effect allows for dynamo action even for Rayleigh numbers below
the critical Rayleigh number for the onset of nonmagnetic convection.
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I. INTRODUCTION

During the past decade, numerical modeling of fully three
dimensional dynamo processes in spherical geometry has be-
come an integral part of geomagnetic research. The results of
these efforts are quite encouraging. The fields predicted by
numerical models have the correct strength and their mor-
phology at the Earth’s surface closely resembles characteris-
tics of geomagnetic data[1,2]. Moreover, field reversals have
been found[3] and the underlying mechanisms are now ana-
lyzed in detail by using self-consistent dynamo models[4,5].

The main problem faced today is that although the output
of the models is in good agreement with the observed fields,
the dynamical regimes which are accessible to numerical in-
vestigations deviate considerably from what is expected for
the Earth’s core. Especially the low values of viscosity and
of thermal and chemical diffusivities in the core pose diffi-
culties which have not been overcome yet.

A dimensionless parameter used to indicate the strength of
viscous effects is the Ekman numberE=n / s2VL2d defined as
the ratio of the rotational time scale to the time scale of
viscous diffusion. Here,n denotes kinematic viscosity,V is
angular velocity, andL denotes the core radius. A common
estimate based on molecular viscosity isE=Os10−15d in the
Earth’s core. Taking into account this very small value, it
would be highly desirable to neglect viscous friction at all in
the bulk of the core by assumingE=0, perhaps retaining
viscous effects only in small boundary layers. Up until now
all attempts to numerically model such a self-consistent mag-
netostrophic dynamo failed due to numerical instabilities
(see e.g., Ref.[6]). For this reason, all self-consistent models
have to rely on the stabilizing effect of viscous friction and
the strategy is to reduce the Ekman number as far as pos-
sible. Unfortunately, the Ekman numbers achievable by nu-
merical simulation exceed the estimated value for the Earth’s
core by many orders of magnitude. This overestimation of
viscous effects leads to force balances and thus to dynamical

regimes which probably deviate considerable from the con-
ditions inside the Earth’s core.

The idea of this study is to use a fully self-consistent
model of the plane layer dynamo originally proposed by
Childress and Soward[7] to investigate the system behavior
at low Ekman number. Typically, spherical models today are
able to reachE=Os10−4d if all diffusion operators are re-
tained in the classical form. The simpler Cartesian geometry
allows us to study dynamos with Ekman numbers as low as
E=5310−7. Several groups used so-called hyperdiffusivities
to get to comparable Ekman numbers in spherical geometry
at least for the large scales. Usually the diffusivities(and thus
E) are then assumed to be a rapidly increasing function of the
wave number of the solution, effectively damping out high
wave-number components. Hyperdiffusion is meant to repre-
sent transport processes at the subgrid scale but its appropri-
ateness has been called into question[8,9]. For this reason
we do not use any form of hyperdiffusion and retain classical
viscous friction.

The low value of the Ekman number in our calculation
allows us to investigate effects which are absent for moder-
ate E and are thus not present in most of todays spherical
numerical dynamo solutions. Special attention is paid to the
influence of the dynamo generated magnetic field on the
planform and amplitude of convection. For moderate Ekman
numbers, dynamo solutions are strongly influenced by vis-
cous friction. This usually prevents drastic changes of the
flow in response to the generated magnetic field. In the low
Ekman number case considered here, the viscous force can
become of secondary importance in comparison to the Lor-
entz force and the convective flow is thus strongly controlled
by the forces exerted by the magnetic field.

II. MODEL AND METHODS

A. Governing equations and boundary conditions

Thermal convection and magnetic field generation is stud-
ied in a rotating plane layer. An electrically conducting
Boussinesq fluid confined between parallel walls atz=0 and*Electronic address: stellma@earth.uni-muenster.de
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z=1 is heated from below. The system rotates about the ver-
tical axes with constant angular velocity.

The governing equations can be written in the form

E

qPr
s]tu + u · = ud − B · = B

= E¹2u − = P − ẑ 3 u + qRaTẑ, s1d

]tB + u · = B − B · = u = ¹2B, s2d

]tT + u · = T = q¹2T, s3d

= ·u = 0, s4d

= ·B = 0. s5d

In Eqs.(1)–(5), the Prandtl number Pr, the Ekman numberE,
the modified Rayleigh number Ra, and the Roberts numberq
are defined by

E =
n

2VL2, Ra =
aDTgL

2Vk
, q =

k

h
, Pr =

n

k
, s6d

whereh is magnetic diffusivity,V is angular velocity,g is
gravitational acceleration,L is a typical length of the system,
n is kinematic viscosity,a denotes the thermal-expansion
coefficient, k the thermal diffusivity, andDT the applied
temperature difference which drives the flow. The equations
have been nondimensionalized by usingL2/h as the time
scale,L as length scale,h /L as velocity scale,s2Vm0rhd1/2

as magnetic-field strength scale, andDT as temperature
scale.r denotes density andm0 is the permeability of free
space. In the following, we refer to the quantity Ro
ªEsqPrd−1=h / s2VL2d as the magnetic Rossby number. To
simplify the notation, we further define

R̃ª

Ra − Rac
Rac

, s7d

where Rac is the critical Rayleigh number for the onset of
nonmagnetic convection predicted by linear stability theory
(see Sec. III A).

We assume that the horizonal boundaries are stress free,
electrically perfectly conducting, and isothermal. In math-
ematical form, the boundary conditions are then given by

]ux,y

]z
= uz = 0 atz= h0,1j, s8d

]Bx,y

]z
= Bz = 0 atz= h0,1j, s9d

and

Tsz= 0d = 1, Tsz= 1d = 0. s10d

The choice of stress free boundary conditions avoids the dy-
namical effect of Ekman boundary layers, whereas the per-
fectly conducting boundary condition facilitates comparison
with theoretical studies of the plane layer dynamo.

To address the problem numerically, we restrict ourself to
horizontally periodic solutions Fsx,y,zd=Fsx+Gi ,y

+G j ,zd∀ i , j PZ, x,yPR, zP f0,1g, FP hu ,B ,Tj where G
PR denotes the aspect ratio. Certainly, long wavelength
structures are excluded by such a procedure and this may
have dynamical consequences. Nevertheless, we hope that
our solutions retain the basic characteristics of the full prob-
lem.

B. Useful definitions

For future reference we define the horizontal and volume
averages

k¯lxyª G−2 E
f0,Gg

E
f0,Gg

¯ dxdy,

k¯lV ª G−2E
V

¯ dV,

where Vª f0,Gg3 f0,Gg3 f0,1g is the computational do-
main. The time average is denoted byk¯l. We further define

(a) the magnetic Reynolds number RemªÎku2lV,
(b) the Peclet number PeªRem/q,
(c) the Reynolds number ReªRem/ sqPrd,
(d) the Elsasser numberLª kB2lV,
(e) the ratio of magnetic to kinetic energy

Emag/Ekinª Ro−1L/Rem
2 ,

(f) the kinetic helicityHªÎksu ·¹ 3ud2lV,
(g) the Nusselt number Nuª kq−1uzT−]T/]zlV,
(h) a dimensionless measure for the deviation from a

Taylor state

t ª 7 E
0

1

ẑ · = 3 sB · = Bddz

E
0

1

uẑ · = 3 sB · = Bdudz8
xy

,

(i) and the number of free decay timesthªp2Dt.
The definition oft is motivated in Sec. III B.th expresses the
length of a calculated time seriesDt in units of the free decay
time of the slowest decaying mode.

Spectra of the solutions will be discussed in the next sec-
tions. We therefore expandu according to

u ª o
l,m,n

expf2pislx + myd/Gg1uxl,m,n
cossnpzd

uyl,m,n
cossnpzd

uzl,m,n
sinsnpzd 2 , s11d

wherel, m are the horizontal wave numbers,n is the vertical
wave number, and we definek2

ª l2+m2. A similar expres-
sion is used forB with fourier coefficientsBl,m,n. To analyze
the horizontal structure of the solution, we further define

v2sl,md = o
n

Ekinsl,m,nd, s12d

S. STELLMACH AND U. HANSEN PHYSICAL REVIEW E70, 056312(2004)

056312-2



Lsl,md = o
n

Emagsl,m,nd, s13d

where Ekinsl ,m,ndª s1/2q2dful,m,nul,m,n
* s1+d0ndg and

Emagsl ,m,ndª 1
2fBl,m,nBl,m,n

* s1+d0ndg denote the contribu-
tions of thesl ,m,nd mode to the dimensionless kinetic en-
ergy ku2lV and magnetic energykB2lV.

C. Numerical method

Dynamo calculations at lowE are numerically challeng-
ing because of the small length scaleL=OsE1/3d that natu-
rally arises when the magnetic field is weak and because of
the different time scales present in the dynamo problem. On
the one hand, in order to get relevant statistics, the simula-
tions have to cover several magnetic decay times, on the
other hand, the time scales of magnetohydrodynamic waves
decreases rapidly with decreasingE [6,10].

Differently from the usually applied spectral methods
[11], we therefore choose a conservative second order finite
volume discretization in space that allows for efficient paral-
lelization using a three dimensional domain decomposition
approach[12]. Details of the method are given in Ref.[13],
so we only give a brief summary here. A similar approach
has also recently been applied to the spherical problem[14].

A primitive variable formulation is used in contrast to the
commonly employed formulation in terms of poloidal and
toroidal potentials(see, e.g., Ref.[2]). To allow a straightfor-
ward treatment of the Coriolis term, a collocated grid is used.
Flux vector splitting is applied to the convective terms which
transforms them into Elsasser space[15]. Second order up-
wind discretization by theQUICK scheme[16] is then used to
avoid artificial hyperbolic behavior.

The stiffness is dealt with by using a fully implicit second
order BDF time stepping scheme[17] which is not limited
by the severe restrictions of the time step length typical for
explicit methods(see, e.g., Ref.[18]). The time derivative is
approximated as

]tf = a0fn+1 + a1fn + a2fn−1, s14d

with

a0 =
1

Dt

1 + 2d

1 + d
, a1 = −

1

Dt
s1 + dd, a2 =

1

Dt

d 2

1 + d
, s15d

whereDt= tn+1− tn, d=Dt / stn− tn−1d and the superscripts de-
note time levels. To solve the resulting system of nonlinear
equations, we basically follow the SIMPLE algorithm[19].
The pressure equation is solved by the Krylov subspace
method BICGSTAB[20]. After each time step, the magnetic
field is corrected in order to fulfill the solenoidal condition
(5).

D. Modeling strategy

The parameters have been chosen with the intention to
reduce the Ekman number as far as possible. We thus confine
this study to Rayleigh numbers close to the critical Rayleigh
number Rac for the onset of nonmagnetic convection. Apart
from easing the computations, this has the advantage that the

gross characteristics of nonmagnetic convection can still be
understood in terms of weakly nonlinear theory.

The main concern of this paper is the study of dynamos at
low E. Of particular importance in this context is to under-
stand in which way a self-generated magnetic field influ-
ences the convective flow. We therefore start by investigating
the nonmagnetic problem in Sec. III A. We then examine the
transition of the flow regime that occurs when a magnetic
field is imposed externally on the convective flow in Sec.
III B. Finally, the full dynamo problem is studied in Sec.
III C. The results gained for the nonmagnetic case on the one
hand and for the case of a strong imposed field on the other
hand serve as extreme cases against which the self-consistent
dynamos can be compared.

III. RESULTS

A. Nonmagnetic convection

Linear theory predicts the critical Rayleigh number Rac
and wave numberkc for the onset of convection to scale as
E−1/3 [22]. For Pr.0.68. . ., convection sets in as stationary
convection. We exclusively consider this case in the present
paper.

The results of linear theory can be illustrated by consid-
ering thez component of the vorticity equation

Ros]tv + u · = v − v · = ud − E¹2v = ]zu + qRa= 3 sTẑd,

s16d

wherevª = 3u denotes the vorticity. It follows that con-
vection can only occur(i.e., ]zuzÞ0) if either inertial or
viscous forces balance the nonconservative part of the Cori-
olis force. For the considered Prandtl numbers, the viscous
force breaks the rotational constraint. The scalingk
=OsE−1/3d follows directly from Eq. (16) as long as]zuz

=Os1d and is thus expected to be a robust feature even for
high flow amplitudes.

1. Choice of parameter values

Table I shows the employed parameter values. The Ekman
number is varied in the range 5310−6øEø10−4. The
Prandtl number is fixed to one and we have chosen the Ray-

leigh number such thatR̃=sRa−Racd /Rac is constant for all
Ekman numbers considered. Since the Roberts numberq is
not a relevant control parameter in the nonmagnetic case, we
assumeq=1 in the following. The nondimensional time scale
is then the thermal diffusion time and the velocity scaling is
based on the local Peclet number.

TABLE I. Parameter values for nonmagnetic calculations.

E 1310−4 5310−5 2.5310−5 1310−5 5310−6

Ra 223.45 280.25 352.03 477.12 600.0

Pr 1 1 1 1 1

Grid 643 963 963 1283 25623128
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2. Flow structure

For all parameter values considered, the flow exhibits a
chaotic time dependence. To give an impression of the spa-
tial structure of the flow, snapshots are shown in Fig. 1 for
E=10−4 (left column) and for E=5310−6 (right column).

The top row(a) shows the geometry of the up- and down-
streams by means of isosurfaces of the vertical velocity. The
flow has a columnar structure and the typical size of the
convection columns strongly decreases with decreasingE.
The kinetic helicity exhibits a strong polarization along thez
axes(Ref. [21], Chap. 8.2) with positive helicity dominating
in the lower and negative helicity in the upper half of the
fluid layer. This is visualized by isosurfaces ofu ·= 3u in
the second row(b). The spatial helicity polarization is crucial
for the ability of the flow to act as a kinematic dynamo.
Isosurfaces of temperature are shown in the last row of Fig.
1. Due to the moderately supercritical value of Ra, the de-
viations of the temperature from the purely conductive gra-
dient are small and there are no thermal boundary layers as
typical for high Rayleigh number convection. The tempera-
ture isosurfaces are almost flat and only slightly deformed by
the convective heat transport in the up- and downstreams.

For a more quantitative description the spectral distribu-
tion of kinetic energy has been calculated. Figure 2 shows
the time average of the quantityv2sl ,md defined in Sec. II B.
The most prominent feature is pronounced maxima at wave
numbers close to the critical wave numberkc as obtained
from linear theory. ForG=1, these arekc=Î20<4.47 for E
=10−4 and kc=Î148<12.17 for E=5310−6 [22]. There is
thus a clear preferred length scale of orderE1/3 of the flow
structures even in the finite amplitude case.

3. Ekman number scalings

The relative amount by which the Rayleigh number ex-
ceeds its critical value determines the strength of the convec-

tive heat transport. In the chosen case of constantR̃, the
Nusselt number Nu is almost constant, independently of the
Ekman number(see Table II). Differently, the flow amplitude
does not remain constant, but increases with decreasing Ek-
man number. Figure 3 shows the scaling of Re andH with E.
The Reynolds number scales approximately as Re~E−1/3.
Since the dominating length scales areL=OsE1/3d, the helic-
ity is expected to scale approximately asL−1U2=OsE−1d and
the results indeed reveal an approximate 1/E scaling.

These scaling exponents are still in good agreement with
results from weakly nonlinear theory[23]. For moderately
supercritical Rayleigh numbers, a statistically stationary fi-
nite amplitude state results from the reduction of the mean
vertical temperature gradient in the interior of the fluid by

FIG. 1. Visualizations of the flow structures for nonmagnetic
convection atE=10−4 (left column) and atE=5310−6 (right col-
umn). The panels in the top row(a) shows isosurfaces ofuz at uz

= ±30 for E=10−4 and atuz= ±50 for E=5310−6 (upstreams: dark
gray; downstreams: light gray). A snapshot of the spatial distribu-
tion of helicity is shown in(b) at 50%(light gray) and −50% (dark
gray) of the maximum absolute value. The plots in the lowermost
row (c) show temperature isosurfaces atT=0.5.

FIG. 2. Spectra of dimensionless kinetic en-
ergy for nonmagnetic convection at(a) E=10−4

and (b) E=5310−6.
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the convective heat transport. Since the horizontal length
scales of the flow decrease with decreasing Ekman number,
the flow velocities have to increase in order to achieve the
necessary reduction of the vertical temperature gradient.

4. Summary of nonmagnetic results

In summary, we conclude that for the chosen Parameter
values, all results share the same dynamical behavior. The
scaling exponents found are in good agreement with those
predicted by weakly nonlinear theory. These scaling laws are

likely to hold in the limit E→0 providedR̃ is chosen small
enough to restrict the flow amplitude to values for which
inertial effects are of secondary importance.

Furthermore, in Sec. III C, we show that the flow ampli-
tudes are high enough to make kinematic dynamo action

possible for order one Roberts numbers. The observed flow
regime is thus an excellent starting point for the study of
nonlinear dynamos.

B. Magnetoconvection

After describing the main features of nonmagnetic con-
vection, in this section we study the response of the convec-
tive flow to an externally applied magnetic field. Many ideas
concerning the nonlinear dynamics governing the dynamo
case are based on magnetoconvection studies. The results of
this section will thus be useful in interpreting the self-
consistent dynamo calculations in Sec. III C.

Most previous studies have been performed with a con-
stant imposed fieldB'=ÎL'x̂ of prescribed strengthL'.
The linearized stability problem has been investigated for
finite Prandtl number in the limitE→0 [24,25] and for gen-
eral, finite Ekman numbers in the infinite Prandtl number
limit [26]. These works clearly demonstrate that for the small
Ekman number case considered in this paper,kc and Rac are
both Os1d independently from the Ekman number provided
the field strengthL' also exceeds an order one value.

This result of linear stability theory can again be illus-
trated by considering the vorticity equation

Ros]tv + u · = v − v · = ud − E¹2v

= = 3 sB · = Bd + ]zu + qRa= 3 sTẑd, s17d

whereB=B'+b denotes the magnetic field consisting of the
imposed fieldB' and of fluctuationsb induced by the con-
vective flow. Differently from the nonmagnetic case, the
nonconservative part of the Coriolis force can now be bal-
anced by the Lorentz force provided the imposed field is

TABLE II. Overview of the dynamo calculations. Rem is the magnetic Reynolds number, Re is the Reynolds number, Nu is the Nusselt
number,L is the Elsasser number, andEmag/Ekin is the magnetic to kinetic energy ratio. The values in parenthesis correspond to nonmagnetic
convection. *Field and flow decayed after more than two mean field decay times. The values given are averages over the period of transient
dynamo action.

Run 1 2 3 4 5 6 7 8* 9 10 11

E 1310−4 5310−5 2.5310−5 1310−5 5310−6 5310−6 5310−6 5310−6 5310−6 5310−6 5310−7

Ra 223.45 280.25 352.03 477.12 600.00 600.00 500.00 450.00 600.00 600.00 1200.00

Rac 189.71 237.93 298.88 405.07 509.40 509.40 509.40 509.40 509.40 509.40 1095.98

Pr 1 1 1 1 1 1 1 1 10 30 1

q 2.5 2.5 2.5 2.5 2.5 1 1 1 1 1 1

G 1 1 1 1 1 1 1 1 1 1 0.25

Grid 643 963 963 1283 1283 1283 1283 1283 963 803 6423256

th 12.22 5.51 4.23 2.64 2.10 2.59 7.84 2.05 4.81 4.07 1.95

Rem 110.5 141.8 170.7 198.9 215.4 136.6 102.4 82.3 127.1 118.6 221.2

(74.6) (92.8) (120.6) (165.8) (204.0) (81.6) (0.0) (0.0) (91.7) (127.5)

Re 44.2 56.7 68.3 79.6 86.2 136.6 102.4 82.3 12.7 4.0 221.2

(29.8) (37.1) (48.3) (66.3) (81.6) (81.6) (0.0) (0.0) (9.2) (127.5)

Nu 1.71 1.73 1.66 1.49 1.37 1.91 1.63 1.47 1.62 1.54 1.84

(1.32) (1.32) (1.34) (1.35) (1.33) (1.33) (1.0) (1.0) (1.38) (1.20)

L 0.31 0.38 0.38 0.31 0.24 0.21 0.16 0.12 0.09 0.07 0.20

Emag/Ekin 0.62 0.97 1.37 2.07 2.86 2.33 3.06 3.60 10.57 27.71 15.54

FIG. 3. Scaling of the time averaged helicity and Reynolds num-

ber for constantR̃ in the nonmagnetic case.
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strong enough. This liberates the system from the severe con-
straints imposed by rapid rotation. The dominating force bal-
ance is now between Coriolis, pressure, buoyancy, and Lor-
entz forces while viscosity plays a minor role and the need
for the presence of a small length scale vanishes.

If the nonlinear problem is considered, complications
arise in the limitE→0 because of the fact that the momen-
tum equation(1) might not have any solutions forE=Ro
=0. A necessary condition for the existence of solutions can
be derived by integrating thez component of Eq.(17) from
the bottom to the top boundary overz, yielding

Ro1]tE
0

1

vzdz+E
0

1

u · = vzdz−E
0

1

v · = uzdz2
− EE

0

1

¹2vzdz=E
0

1

ẑ · = 3 sB · = Bddz. s18d

In the magnetostrophic case Ro=E=0 this equation reduces
to the desired solvability condition

E
0

1

ẑ · = 3 sB · = Bddz= 0 ∀ sx,yd P R2, s19d

which represents Taylor’s constraint in Cartesian geometry.
The quantityt defined in Sec. II B provides a measure of the
degree to which Eq.(19) is satisfied in a numerical simula-
tion [27].

Building up on the linear results, Roberts and Stewartson
[28,29] studied the weakly nonlinear case. Complications
arise for strong magnetic fields and moderate Roberts num-
bers. In this case, there is a degeneracy in the linear stability
problem and two distinct rolls are equally possible. Their
nonlinear interaction leads to a violation of Taylor’s condi-
tion [29]. The resulting Lorentz force can then only be bal-
anced by inertial forces resulting in a geostrophic flowug
=ugsydx̂ which plays a crucial role in the dynamics of the
system. We found that in fully nonlinear calculations,ug can
become very strong if a simple, one dimensional mean field
B'=B'szdx̂ is applied externally. To avoid this kind of be-
havior, a more complicated, two dimensional mean field is
used in this study.

1. Governing equations

The governing equations are derived by separating the
magnetic field into a mean partB'=kBlxy and a fluctuating
part bªB−B'. The induction equation then becomes

]tB' = − ku · ¹ b − b · ¹ ulxy + ¹2B', s20d

]tb = − u · = sB' + bd + sB' + bd · = u

+ ku · ¹ b − b · ¹ ulxy + ¹2b. s21d

Since at this stage we are interested only in the response of
the system to an imposed mean field of given strengthL',
we neglect the process of mean field generation here, assume

B' to be given and solve Eq.(21) together with Eqs.(1), (3),
and (4), and= ·b=0.

2. Choice of applied mean field

The applied mean field has been chosen to be as simple as
possible. To be physically meaningful, it must satisfy the
boundary conditions(9) and the conditione0

1B'dz=0. The
simplest choiceB'=Î2L' cosspzdx̂, however, rapidly leads
to a strong geostrophic flowug=ugsydx̂ [29] which is unde-
sirable in this context. The inclusion of third order terms in
the Fourier representation ofB',

B' = ÎL'1Î2/2fcosspzd − coss3pzdg
− cosspzd

0
2 , s22d

eliminates this problem. The chosen field has a spiral stair-
case structure, is antisymmetric with respect to the midplane
z=0.5, and thus has at least some similarities with the fields
observed in the dynamo case[Sec. III C and Fig. 10(c)]

3. Procedure and choice of parameters

To facilitate the comparison of the relevant flow regimes
with the nonmagnetic case, the Rayleigh, Ekman, and
Prandtl numbers are the same as for the nonmagnetic calcu-
lations (see Table I). For simplicity, we further assumeq=1
in this section resulting in the fact that all diffusive time
scales are the same.

Two sets of numerical experiments have been performed.
For fixedE=5310−6, L' has been systematically varied in
the range 0øL'ø10 to explore the response of the system
to weak and strong imposed fields. We have further investi-
gated the dependence of the strong field states atL'=10 on
the Ekman number for 5310−6øEø10−4. A 643 grid has
been used for all calculations.

4. Flow structure

Figure 4 shows the resulting flow structures atE=5
310−6 for various values of the imposed field strengthL'.
For small values ofL', the flow is similar to the nonmag-
netic case described in Sec. III A. and obeys the weak field
scalingL~E1/3. The Taylor proudman theorem manifests it-
self in the close similarity of both temperature isosurfaces
shown in Fig. 4(a). With increasing field strengthL', the
typical size of the flow structures increases and the Taylor
proudman effect successively loses significance. ForL'

=10, the flow is dominated by large scale features of size
L~Os1d. We further observe that the temperature isosur-
faces successively become closer to the boundary with in-
creasing field strength. This reflects the fact that thermal
boundary layer structures develop at largeL'.

5. Influence of the applied field strength

Figure 5 gives a more quantitative description of the ef-
fects of the imposed field on the convective flow. It shows
the Reynolds number and the quantityt defined in Sec. III B
as a function of the applied field strengthL'. With increas-
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ing L', the amplitude of the flow as measured by the Rey-
nolds number strongly increases. This is to be expected on
the grounds of linear theory since forL'øOs1d, the system
gets increasingly supercritical with increasingL'. We fur-
ther observe thatt rapidly decreases in the range 0.1øL'

ø1 and that a transition to an approximate Taylor state, char-
acterized by a value oft much smaller than one, occurs.

6. Ekman number scalings

We further computed the Ekman number dependence of
the strong field states withL'=10. These might be con-
trasted with the weak field scaling laws discussed in Sec.
III A. Figure 6(a) shows the convective heat transport(mea-
sured by the Nusselt number) and the Reynolds number as a
function of E.

As compared to nonmagnetic convection, the heat trans-
port across the fluid layer is much higher in the magnetocon-
vection case. This is caused by the fact that large scale con-
vection is much more efficient in transporting heat than the
small scale flows arising in the nonmagnetic case. In addi-

tion, for fixed R̃ the Nusselt number now increases with de-
creasing Ekman number. This is due to the system becoming
more and more supercritical with decreasingE. A power-law
fit results in the approximate scaling Nu~E−1/5.

The amplitude of the convection as measured by the Rey-
nolds number also increases with decreasingE. In this case,
a power-law fit results in Re~E−0.29. Note that in the mag-
netoconvection case considered here Re increases slower
with decreasingE than for nonmagnetic convection. At first

FIG. 4. Isosurfaces of temperature atT=0.3 and atT=0.7 for various values of the imposed field strength in the magnetoconvection case
sE=5310−6,Ra=600,Pr=q=1d.

FIG. 5. Reynolds number andt as a function of the imposed
field strength forE=5310−6,Ra=600, and Pr=q=1d.
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glance, this suggests that for fixedR̃ and decreasing Ekman
number, nonmagnetic convection ultimately becomes more
vigorous than magnetoconvection. The corresponding Rey-
nolds numbers however become so large that the scaling
laws discussed here are likely to lose validity.

Figure 6(b) shows the Ekman number dependence oft at
L'=10. With decreasing Ekman number, the influence of
viscosity is reduced and the magnetic field satisfies Taylor’s
condition increasingly well. We find thatt scales approxi-
mately ast~E−1/3.

7. Summary of magnetoconvection results

In summary, we conclude that the presence of a strong
magnetic field fundamentally changes the dynamical regime
from a viscously dominated to a magnetostrophic one. The
influence of viscosity uniformly decreases with decreasing
Ekman number. We further find that even for weak magnetic
fields with an intensity too low to cause a transition to an
approximate state, both the planform and the amplitude of
convection strongly depend on the applied field strength.

The flow regimes found for either nonmagnetic convec-
tion and for strong imposed magnetic fields provide extreme
cases which are helpful for the interpretation of dynamo cal-
culations. In the self-consistent dynamo problem, the energy
necessary to prevent the magnetic field from Ohmic decay

must be provided by work done against Lorentz forces. This
restriction is absent in the magnetoconvection problem
where the large scale field is prescribed. Nevertheless, the
convective flows are expected to be largely influenced by the
magnetic field in the dynamo case at low Ekman number.

C. Dynamos

In Sec. III A we described the character of nonmagnetic
convection. The Rayleigh numbers were chosen small
enough for scaling laws predicted by weakly nonlinear

analysis to hold. In this case, for constantR̃ the Reynolds
number scales according to Re~E−1/3 while the Nusselt
number is almost constant. The convective flow is character-
ized by a preferred length scale of orderE1/3.

The effect of an imposed magnetic field on the amplitude
and planform of convection was studied for the same set of
control parameters in Sec. III B. We demonstrated that the
presence of a strong magnetic field leads to a dynamical
regime which is drastically different from the nonmagnetic
case. The presence of the imposed field leads to large scale
convection accompanied by very efficient heat transport and
a nearly magnetostrophic force balance.

In this section we study the full dynamo problem in which
the magnetic field is self-generated. According to the theo-
retical analysis of Soward[23], we would expect a weak
initial magnetic field to be amplified by kinematic dynamo
action provided the magnetic Reynolds number is high
enough. This kinematic dynamo generates an oscillatory
magnetic field by the typical two scale mechanism in which

(1) small scale fieldb is generated from the large scale
mean fieldB' by the small scale motions, and

(2) the large scale fieldB' is induced by the average of
the action of the small scale convective flow on the small
scale fieldb.
Small scale motions are inefficient at generating magnetic
field. Balancing terms in the dimensionless form of the in-
duction equation, where the large length scale is assumed to
beOs1d suggests that the critical magnetic Reynolds number
for the onset of dynamo action scales asE−1/6 and this is also
revealed by Soward’s analysis of the kinematic dynamo
problem[23]. In the nonmagnetic case we found Re~E−1/3

for fixed R̃. We therefore expect that the marginalR̃ for the
onset of kinematic dynamo action decreases with decreasing
E.

Soward studied the case of weak magnetic fields withL
=OsEd by means of an amplitude expansion. In this case, the
leading order kinetic energy balance is not affected by the
magnetic field and a dynamical equilibrium is possible pro-

vided R̃ is small enough. In this regime, the Lorentz force
only controls the fine structure of the flow which still has
small horizontal length scalesL=OsE1/3d.

Subsequent analysis by Fautrelle and Childress[30] for
intermediate field strengthL=OsE2/3d revealed that such
fields lead to instability and rapid field growth occurs. This
showed that the weak field solutions are very special in the
sense that they are unstable to finite magnetic perturbations.
The finding is consistent with results from magnetoconvec-

FIG. 6. Ekman number dependence for an imposed field
strengthL'=10. (a) shows Nu and Re as a function ofE and (b)
displays the Ekman number dependence oft.

S. STELLMACH AND U. HANSEN PHYSICAL REVIEW E70, 056312(2004)

056312-8



tion theory for externally applied uniform fields which are
known to reduce the critical Rayleigh number for the onset
of convection and thus strongly facilitate convective mo-
tions. The analysis of the last section revealed that this con-
vection promoting effect also occurs for nonuniform applied
fields in the fully nonlinear case.

The so called “runaway” field growth described above is
expected to continue until the Lorentz forces prevent further
field amplification and a dynamical balance between Corio-
lis, Lorentz, buoyancy, and pressure forces is set up. Analyti-
cal studies in this regime are difficult since the convection is
dominated by large scale features so that the two scale
method is no longer applicable.

The scenario described above is derived from weakly
nonlinear theory in the small Ekman number limit. In this
section, we discuss results from fully nonlinear dynamo cal-
culations at varying values of the Ekman number 5310−7

øEø10−4. We will demonstrate that transition takes place in
this range from a viscously controlled regime to a state
where the flow structure is largely influenced by the mag-
netic field.

1. Choice of parameters

Table II shows the values of the control parameters em-
ployed for the dynamo calculations. The parameter values
used in Secs. III A and III B have been included to allow a
comparison with the nonmagnetic and magnetoconvection
results. A Roberts numberq=2.5 has been chosen to permit
kinematic dynamo action atE=10−4 and the corresponding
calculations at lowerE also use this value ofq. At low values
of the Ekman number, the increase of the amplitude of con-
vection with decreasing Ekman number allows kinematic dy-
namo action at lower Roberts numbers. Most calculations at
low Ekman number thus applyq=1 which prevents the mag-
netic field from developing very small scales and at the same
time reduces the numerical stiffness of the problem.

For E,5310−6, the aspect ratio was reduced toL
=0.25 to resolve the small horizontal length scale of non-
magnetic convection. This is no severe limitation for the
nonmagnetic case since the box still contains many convec-

tion cells. It, however, clearly limits the size of the largest
convection cells in the dynamo case.

2. Nonexponential field growth

Most of the dynamos discussed in this section have been
obtained by using the output of runs at different parameter
values as the initial condition. In some cases, the dynamos
were started by inserting a small magnetic perturbation into
statistically stationary nonmagnetic convection. This initial
field is then amplified by the convective flow through kine-
matic dynamo action and initially the magnetic field grows
exponentially with a well defined growth rate. As an ex-
ample, Fig. 7 shows forE=5310−6, Ra=600, Pr=q=1 the
temporal evolution ofL, Rm, andEmag/Ekin. Eventually the
magnetic field becomes strong enough to destabilize the con-
vection which leads to increasing flow velocities. Figure 7
shows that this in turn causes more efficient dynamo action
resulting in very fast, nonexponential field growth until satu-
ration occurs.

The effect just described is observable in all our simula-
tions in which the dynamo grows from a small initial field. It
results from two instabilities(magnetic field intensification
by induction and destabilization of the convective flow by
the induced field) occurring at the same time. This “runaway
field growth” is strongest at lowE and in cases where the
magnetic Reynolds number is close to the marginal value for
the onset of dynamo action. The kinematic growth rate is
then small and changes rather drastically when the magnetic
field starts to destabilize convection. In addition, the flow
velocities differ more strongly between the nonmagnetic and
the saturated dynamo branch at smallRm.

3. Flow structure in the saturated regime

In the saturated regime, the influence ofB on the plan-
form of convection successively becomes more pronounced
with decreasing Ekman number. Figure 8 contrasts time av-
eraged kinetic energy spectra for the nonmagnetic and the
dynamo case at three different Ekman numbers. ForE
=10−4, the scales of the flow are nearly uninfluenced by the
action of the magnetic field as revealed by the similarity of

FIG. 7. Temporal evolution of the
magnetic Reynolds number Rem, the
Elsasser numberL, and the ratio of
magnetic to kinetic energyEmag/Ekin

for E=5310−6, Ra=600, Pr=q=1.
The dynamo was started by inserting a
small initial field into fully developed
nonmagnetic convection. The gray bar
indicates the phase of exponential kine-
matic growth.
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the dynamo and the nonmagnetic spectrum. Only the distri-
bution of the energy among modes withk<kc is slightly
changed. ForE=5310−6, the spatial scales of the dynamo
are already larger as compared to the nonmagnetic case and
the sharp peaks at high wave numbers of orderkc almost
disappear. The kinetic energy is mainly distributed among
modes with wave numberskø9 in contrast to the nonmag-
netic case where the strongest modes have wave numbers
11økø14. For the lowest Ekman number considered,E
=5310−7, the strongest modes havek=Os1d in the dynamo
case and the spectrum monotonically decreases with increas-
ing k. It has to be recalled here that in this case the compu-
tational domain has a small aspect ratioG=0.25. The maxi-
mum size of the convection cells is thus limited. We
conclude from these results that the scale disparities between
nonmagnetic and dynamo states strongly increase with de-
creasing Ekman number.

Figure 9 shows snapshots of the flow atE=5310−7. Ar-
rows which are scaled by the local flow speed illustrate the
velocity field at the upper boundaryz=1. The graph in the
middle shows the time history of the Elsasser number and
the dashed lines indicate the time instants at which the dif-
ferent snapshots have been taken. For comparison, the non-
magnetic case is shown in the upper left panel.

The nonmagnetic flow has the same structure as the solu-
tions discussed in Sec. III A. In the dynamo case, quite dis-
tinct flow patterns develop at low Ekman number. On time
average the flow is dominated by large scale convection. A
detailed inspection of the temporal behavior reveals that
strong large scale flows develop during episodes of intense
magnetic field while smaller convection cells arise during
times of low field intensity.

As is to be expected from the magnetoconvection results,
a sufficiently strong magnetic field permits vigorous large

FIG. 8. Kinetic energy spectra for
nonmagnetic convection(left column)
and for dynamos(right column) for dif-
ferent values ofE. The upper row(a)
corresponds toE=10−4 (run 1), the
middle row (b) to E=5310−6 (run 6),
and the lowermost row(c) to E=5
310−7 (run 11).

S. STELLMACH AND U. HANSEN PHYSICAL REVIEW E70, 056312(2004)

056312-10



scale convection which efficiently transports heat across the
layer. The resulting flow is, however, incapable of sustaining
the strong field over long times. In contrast to the relatively
ordered spatial structure which makes the nonmagnetic flow
such an efficient and simple kinematic dynamo, much less
regular and strongly time dependent flow patterns arise. The
associated magnetic field amplitude fluctuates strongly. Dur-
ing times of weak field intensity, the large scale convection
may break down entirely. The magnetic field then decays
slowly while at the same time flow instabilities in the form of
smaller convection cells develop. This small scale convec-
tion is inefficient in transporting heat but its regular structure
again leads to an amplification of the magnetic field, ulti-
mately making the small convection cells again unstable to
large scale flows.

This intermittent behavior is not surprising. On the one
hand, the magnetoconvection results show that at low Ekman
number the convection responds rather sensitively to slight
changes of the applied field strength. On the other hand, it is
known from kinematic dynamo theory that often slight
changes of the flow structure lead to strong changes in the

efficiency of the dynamo process. The interplay of both ef-
fects is likely to generate a strongly time dependent, fluctu-
ating dynamo. Based on a magnetoconvection study, a simi-
lar scenario has been proposed by Zhang and Gubbins for the
spherical case[31,32]. Because of the higher numerical de-
mands, the effect has not yet been observed in a self-
consistent spherical dynamo simulation.

4. Magnetic field structure

The magnetic field exhibits a fairly regular structure for
moderate Ekman numbers where the response of the convec-
tion to the fluctuating field is weak. In the low Ekman num-
ber case, due to the intermittent flow, the field structure is
much less regular. As an example, Fig. 10 shows the field
structure for intermediate Ekman number,E=5310−6 at
Ra=600, Pr=q=1. The upper left panel shows a snapshot of
the magnetic energy at 20% of its maximum value. Typically,
B is weak in the center of the layer and attains its maxima
about midway between the center and the boundaries.

The distribution of magnetic energy among the horizontal
modes is shown in Fig. 10(b). Most of the magnetic energy is

FIG. 9. Velocity field at the upper
boundary z=1 for E=5310−7, Ra
=1200, Pr=q=1 at different time in-
stants. The arrows are scaled by the lo-
cal flow speeduuu.
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contained in the mean field modes withsl ,md=s0,0d. The
magnetic spectrum monotonically decreases with increasing
k. Small scale convection feeds energy into the high wave-
number components of the magnetic field which then moves
up the spectrum in an inverse cascade.

Since the magnetic field is strongly dominated by modes
with k=0, which play a key role in the dynamo process, we
give a visualization of the mean field in Fig. 10(c). The ar-
rows shown are scaled by its absolute value. The mean field
is nearly antisymmetric with respect to the planez=0.5 and
resembles a spiral staircase twisting in the same sense as the
velocity field. Together with the helicity, atz=1/2 thesense
of twisting of the mean field changes sign. The appearance of
this spiral staircase structure ofB' is predicted by the two
scale analysis of Soward[23] and could perhaps be most
vividly understood by picturing each half of the layer as a
crude representation of a G. O. Roberts type dynamo[33].

The time evolution of the mean field is quite simple. To
illustrate this, the last panel of Fig. 10 shows the temporal
evolution of the (0,0,1) mode of the horizontal magnetic
field. The figure is typical for the strongest mean-field modes
which are primarily the odd modes. The mean field rotates in
a sense opposite toV with a period of the order of the free
decay time of the system. This mean field rotation period is
the fundamental time scale of the dynamo cycle.

The magnetic field structure is much less regular in the
caseE=5310−7 discussed above where the planform of con-
vection is largely controlled by the Lorentz forces.

5. Quantitative analysis

Quantitative results of the dynamo calculations are given
in Table II. The values in parantheses correspond to the non-
magnetic state. The length of the time span over which the
statistically fluctuating values have been averaged are given
in units of the free magnetic decay time of the slowest de-
caying mode. Due to the high numerical cost at low Ekman
number, these time spans become relatively short as typical
for such studies(see, e.g., Ref.[34]). Still we feel that the
obtained numbers reasonably illustrate the quantitative be-
havior.

A crucial output parameter of dynamo calculations is the
Elsasser numberL measuring the strength of the generated
magnetic field. The magnetic fields produced have time av-
eraged Elsasser numberskLl in the approximate range
[0.1,0.4]. Comparison with the magnetoconvection results at
E=5310−6 (see Fig. 5) indicates that this is about an order
of magnitude to low to cause a transition to a Taylor state.
Approximate Taylor states have been found atE=Os10−5d in
a recent study by Rotvig and Jones[34]. Differently from

this study, the authors apply higher values ofR̃ andq, use a
tilted rotation axes, entirely neglect inertia, and assume rigid,
electrically insulating boundary conditions. As our results il-
lustrate, at small Ekman number magnetic fields with El-
sasser numbers lower than 1 can nevertheless have a pro-
found effect on the amplitude and planform of convection. In
the case ofE=5310−7, during times where the magnetic
field is strong and the flow is characterized by large scale

FIG. 10. Structure of the dy-
namo generated magnetic field at
E=5310−6, Ra=600, Pr=1,q=1.
An isosurface of the magnetic en-
ergy at 20% of its maximum value
is shown in (a), (b) shows the
spectral distribution of the mag-
netic energy among the horizontal
modes(see text for details), and
(c) is a plot of the horizontally av-
eraged magnetic field where the
arrows are scaled by the absolute
value. The time history of the
Fourier coefficientsBxs0,0.1d

and

Bys0,0.1d
is shown in(d).
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convection, relative low values oft<0.1 are observed. Dur-
ing times of weak magnetic fields and small scale convec-
tion, Taylor’s condition is not well satisfied and higher val-
ues oft occur.

In all cases considered, the vigor of the flow and the heat
transport increases through the action of the Lorentz force.
The effect is strongest in cases of relatively low magnetic
Reynolds numbers and decreases for magnetic Reynolds
number well beyond the critical value for the onset of dy-
namo action. Again, the effect manifests itself most clearly in
the caseE=5310−7 during times where the magnetic field is
strong and large scale convection very efficiently carries heat
across the layer.

The ratio of magnetic to kinetic energy as a function of

the Ekman number forq=2.5, Pr=1 and constantR̃ (runs
1–5) is shown in Fig. 11.Emag/Ekin increases with decreasing
Ekman number approximately according toEmag/Ekin
~E−1/2. If it is assumed that the Elsasser number is indepen-
dent of the Ekman number and the kinetic energy scales
according toE−2/3 as in the nonmagnetic case,Emag/Ekin
=E−1sqPrdL /Rem

2 ~E−1/3. The ratio of magnetic to kinetic en-
ergy thus increases rather rapidly with decreasingE, again
reflecting the fact that the convection promoting effect de-
creases at high magnetic Reynolds number. The absolute
value of Emag/Ekin strongly depends on the value of the
Prandtl number(see run 6, 9, and 10). For high Prù10, the
ratio is approximately proportional to Pr. This suggests that
the system becomes independent of inertia[35], since in our
scaling the Prandtl number only appears in the inertia term.

6. Subcritical dynamo action

The calculations presented above clearly show that the
magnetic field acts to promote convection. This gives ground
to the assumption that dynamo action might also exist for
lower values of the Rayleigh number, perhaps even for Ray-
leigh numbers below the critical value for the onset of non-
magnetic convection. Indeed, indications for subcritical dy-
namo action have been found in a study by St. Pierre in a
parameter regime comparable to the present study[36]. His
study covered only a small fraction of a mean field decay

time and was confined to a periodic box of small aspect ratio.
We thus find it worthwhile to reconsider the problem of sub-
critical dynamos here. Since an infinite time series would be
necessary to safely conclude that a specific dynamo solution
survives as a subcritical dynamo, we use the term “long liv-
ing dynamos” for solutions which survive for the entire cal-
culated time series which has to cover several mean field
decay times of the system and avoid the term “stable” here.

Starting from the dynamo solution atE=5310−6, Ra
=600, Pr=q=1, we successively reduced the Rayleigh num-
ber. At Ra=500, which is only slightly below the critical
value, we find a long living dynamo that survived for the
entire calculated time series which covered nearly eight
mean field decay times. Figure 12(a) shows the temporal
evolution of the Elsasser number and of the magnetic Rey-
nolds number. By switching off the Lorentz force in the mo-
mentum equation, we observed that convection rapidly
breaks down. We therefore conclude that it is really the Lor-
entz force and not the nonlinear properties of the momentum
equation that allow for convection and dynamo action in this
case.

Encouraged by this result and the promisingly high value
of the magnetic Reynolds number which fluctuates about
Rm<100 for Ra=500, we further reduced the Rayleigh num-
ber to Ra=450. Figure 12(b) again shows a plot ofL andRm
versus time. After a short transient, the dynamo settles into a
state where at firstRm fluctuates about 80 and the magnetic
field shows no sign of decay. After more than two mean field
decay times, however, both field and flow suddenly break
down.

This clearly illustrates the difficulties in establishing sub-
critical dynamo action. The basin of attraction of the dynamo
branch is limited and sufficiently strong fluctuations may
drive the dynamo into a decay state even after a long period
of apparently “stable” dynamo action. Very long time series
are thus needed to conclude with high probability that a
promising looking system is indeed a stable dynamo. We
conclude from these results that long living subcritical dyna-
mos exist atE=5310−6, but that this subcritical branch does
not extend very far into the low Rayleigh number parameter
space.

IV. SUMMARY AND CONCLUDING REMARKS

In this study we aim at a better understanding of the dy-
namo process at low Ekman number. Cartesian models are
well suited for this purpose since the simpler geometry al-
lows to reach more extreme parameter values. Furthermore,
the simplicity of the model helps us to understand the ob-
tained results.

In order to put the interpretation of the dynamos on a firm
footing, nonmagnetic convection as well as magnetoconvec-
tion with an applied mean field are studied first. The choice
of a moderate value of the Rayleigh number guarantees that
the nonmagnetic problem can still be interpreted on the
grounds of weakly nonliner theory. The flow consists of ver-
tical convection columns with a characteristic horizontal
length scaleL~E1/3. For fixed sRa−Racd /Rac, the heat
transport remains almost independent of the Ekman number.

FIG. 11. Ratio of magnetic to kinetic energy as a function of the

Ekman number for Pr=1,q=2.5, and constantR̃.
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In contrast, the amplitude of convection as measured by its
Reynolds number increases with decreasing Ekman number
according to Re~E−1/3.

The magnetoconvection problem was addressed for the
same values of the control parameters. As indicated by linear
theory [24–26], we found that a drastic transition to large
scale convection occurs when a sufficiently strong magnetic
field is externally applied. This transition is accompanied by
a strong increase of the flow amplitude and of the heat trans-
port. For sufficiently strong imposed fields, approximate Tay-
lor states are observed. As expected, Taylor’s condition is
increasingly well fullfilled with decreasing Ekman number.

The results gained in the nonmagnetic case and for the
magnetoconvection problem provide the background for an
understanding of the dynamo case. Our dynamo simulations
reveal that with decreasing Ekman number, a transition takes
place from a viscously dominated flow regime characterized
by the weak field scalingL~E1/3 to a regime where the
Lorentz forces control the flow structure to a large extend. In
this regime, on time average the convective flow is domi-
nated by long wavelength modes. The scale disparities be-
tween nonmagnetic and dynamo states strongly increase with
decreasing Ekman number.

At low Ekman number, the flow reacts quite sensitively to
changes of the fluctuating magnetic field. Both the amplitude
and the structure of convection strongly depend on the field
strength. On time average, the flow is dominated by long
wavelength modes. This does not mean that small scales
never dominate. As the magnetic field strength fluctuates,
small convection cells develop during times of low field in-
tensity. This small scale flow again amplifies the magnetic
field by the well known two scale mechanism, and, as the
field grows again, the small convection cells in turn become
unstable to large scale flows. The dynamo oscillates between
both states, each one being unstable to the other. This kind of
behavior has been proposed to be relevant for the geody-
namo by Zhang and Gubbins[31] on the basis of results
from kinematic dynamo theory and from magnetoconvec-
tion.

For the moderate values of the Rayleigh number consid-
ered here, the magnetic field facilitates convection leading to
phenomena like nonexponential “runaway” field growth and
subcritical dynamo action. The convection promoting effect,
however, seems to decrease with increasing magnetic Rey-
nolds number. We therefore conclude that the effect might
not be a robust feature at high Rayleigh number.

An important goal of dynamo modeling is a thorough un-
derstanding of the dynamics of the Earth’s core. Differently
from the Cartesian model studied in this paper, spherical
models provide a much more realistic geometry and allow a
detailed comparison of the simulations with observational
data. The more complicated spherical geometry, however,
permits dynamo calculations only at moderate Ekman num-
bers where viscous effects prevent drastic changes of the
flow in response to the generated magnetic field. The behav-
ior of spherical dynamos at low Ekman numbers is thus un-
known at present time. Results for nonmagnetic convection
and for magnetoconvection in spherical shells(see, e.g., Ref.
[32]), however, suggest a scenario similar to the one dis-
cussed in the present paper for the Cartesian case. We there-
fore feel that our results are relevant for a better understand-
ing of core dynamics.

APPENDIX: RESOLUTION

The results presented in this paper, especially the spectra
shown in Fig. 8 with high frequency components being
present in the calculated fields raise the question of the ac-
curateness of these solutions. To address these issues, exten-
sive resolution tests have been performed. For example, we
interpolated our solutions atE=5310−6, Ra=600, Pr=q=1
to a finer grid with twice the resolution in the horizontal
direction s25632563128 gridd and continued the calcula-
tion. To address the effects of fairly poor resolution, a solu-
tion on a 643 grid has also been computed. Figure 13 shows
kinetic energy spectra from these calculations. Since we use
time averaged spectra withul u , umuø20 as an indicator for the
lowest order flow structures, we also show the corresponding
diagram here.

Comparing the time averaged spectra clearly indicates
that even the calculation on the very coarse 643 grid reveals
the dominating features quite well. This is also true for the

FIG. 12. Time history of the magnetic Reynolds number and of
the Elsasser number forE=5310−6, Pr=1,q=1, and(a) Ra=500,
(b) Ra=450.
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time averaged spectrum of the magnetic field. In addition, we
reproduced the nonexponential field growth on the coarse
643 grid and on the fine 25632563128 grid. We thus usu-
ally choose the 1283 grid at E=5310−6 and resolutions
which provide a comparable accuracy for the other Ekman
numbers considered as a compromise between the conflicting
demands of high accuracy and available computational re-
sources.
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